

31 January 2013

Company Announcements Office Australian Securities Exchange

11 Pages

Quarterly Activities Report - For Quarter Ended 31 December 2012

Highlights & Achievements

Mt Kare Project PNG Commencement of Drilling of Bonanza Zones High Grade Gold Results

Bonanza Zone drilling commenced, aimed at testing quartz roscoelite mineralisation, an indicator of bonanza gold grades. The drill programme was established by Tony Burgess, an experienced ex-Porgera consultant.

- Assay results from the 2012 Drill Programme continue to confirm the project's potential. Best results recently released include:
- 42 m at 4.9 grams/tonne (g/t) gold, 62 g/t silver from 62m, including
 23 m at 7.4 g/t gold, 58 g/t silver from 78 m downhole;
- 30 m at 3.7 grams/tonne (g/t) gold, 96 g/t silver from 7m, including
 7 m at 7.8 g/t gold, 92 g/t silver from 26 m downhole;
- 23 m at 3.9 grams/tonne (g/t) gold, 18 g/t silver from 79m downhole;
- 9 m at 9.3 g/t gold, 54 g/t silver from 116m downhole;
- 11 m at 6 g/t gold, 54 g/t silver from 21 m downhole, and
 15 m at 6.1 g/t gold, 42 g/t silver from 49 m downhole;
- 10 m at 6.3 g/t gold, 6 g/t silver from 20m downhole;
- 180 m at 1.8 g/t gold, 18 g/t silver from surface, including
 7 m at 6.2 g/t gold, 17 g/t silver from 119m downhole;
- 205 m at 1.9 g/t gold, 15 g/t silver from 22m depth

Corporate

• Cash position: \$3.3 million at 31 December 2012.

Additional \$7 million capital raising completed in January 2013.

Corporate Summary*

Shares on Issue:

786 million

Market Capitalisation:

~A\$ 100 Million

Cash (31 Dec 2012):

A\$ 3.3 Million (\$7Million raised Jan'13)

Top Shareholders:

BakerSteel 10.2% BlackRock 8.6% Genesis Asset 8.4% Capital Group 5.0% Och-Ziff Capital 4.7%

* As at the date of this report

Project Development - Mt Kare, PNG

Indochine Mining Limited (ASX:IDC) is an ASX listed company developing a large high grade gold/silver deposit at Mt Kare in Papua New Guinea (PNG). The Mt Kare project hosts a growing gold resource currently containing 1.8 million ounces gold plus 20Moz silver (Total JORC compliant Resource 28Mt at 1.9 g/t Au, 22.5 g/t Ag, at December 2011). The deposit lies 15 kilometres southwest of Barrick's 28 million ounce Porgera gold mine, which has produced over 500,000 ounces per year for over two decades at gold grades from 3 – 40g/t Au. Mt Kare has a similar geological setting and mineralisation style. Recently identified bonanza zones have confirmed the potential to substantially increase the contained gold resource. Potential production of 100-160,000 oz/yr gold and ~1Moz/yr silver was modelled in early 2015 in a Pre-Feasibility Study released circa Sept/Oct 2012. The Company has initiated a full feasibility study as an intermediate step to gain a mining lease and separately to delineate extension and satellites to the currently known resource, focussing initially on the bonanza grade zones.

Bonanza Zone Drilling

Drilling commenced in December on two Bonanza gold zones in the BZ and WRZ Zones of the deposit. The Bonanza Zones were identified in 3 places by an experienced consultant, Tony Burgess, who worked at the adjoining world-class Porgera gold mine for 11 years as Chief Geologist and Competent Person. He has identified that the high grade quartz-roscoelite gold zones at Mt Kare have an identical signature to the 'bonanza' gold-quartz-roscoelite zones at Porgera. Six close spaced drillholes have been completed to define the character of the quartz roscoelite bonanza zone within the BZ zone around drillhole 122SD11. Drilling is currently underway around a Bonanza Zone identified in the south of the WRZ zone. First results are expected from February onwards.

2012 Drill Programme

Assay results from the 2012 Drill Programme continue to confirm the project's potential, with final results expected in February. Indochine's 2012 diamond drilling programme was completed in August 2012, with 58 diamond drillholes for a total of 7791 metres. The drill programme was focused on ensuring a robust resource and geological model and to compare grade variability and density measurements with pre-Indochine drilling, as well as provide core for metallurgical work.

Landowner Investigation Study

The completed Landowner Investigation Study has been a key focus for the company to formally identify local landowners. Survey of customary land boundaries will be conducted in the first half of 2013, leading to a completed Landowner Investigation Report under the auspices of the Land Act. Up on completion of the report full discussions will occur with landowners and the government on future benefits sharing amongst identified customary landowners when the project becomes a mining operation. Local communities and the government regulators have been overwhelmingly supportive of this process and it is being considered as a future guideline for properly identifying legitimate customary land owners and thereby unlocking the country's mineral wealth.

Future Focus

The Company intends to conduct a full feasibility study during 2013, which will lead to the application for mining leases from the end of 2013, with the objective of commencing production in 2015, subject

to regulatory approval and stakeholder consent. Separately, Indochine aims to grow the resource, focussing initially on the bonanza grade zones, which could significantly increase the grade of the early years of production.

High grade gold/silver results – 2012 Drill Programme

High grade gold/silver assay results recently released from the 2012 drill programme include:

Drillhole 147SD12

30 metres (m) at 3.7 grams/tonne (g/t) gold, 96 g/t silver from 7m depth, which includes 7 m at 7.8 g/t gold, 92 g/t silver from 26m to 33m depth downhole, and 30 m at 1.5 g/t gold, 32 g/t silver from 44m downhole, within the Black Zone (BZ).

Drillhole 148SD12

23 m at 3.9 g/t gold, 18 g/t silver from 79m depth downhole, which includes
5 m at 8.7 g/t gold, 10 g/t silver from 96m to 101m depth downhole, and
10 m at 3.0 g/t gold, 13 g/t silver from 130m depth, in the Western Roscoelite Zone (WRZ).

Drillhole 149SD12:

9 m at 9.3 g/t gold, 54 g/t silver from 116m depth downhole, with 3 m at 25.0 g/t gold, 100 g/t silver from 116 m and 13 m at 1.0 g/t gold, 28 g/t silver from 132 m downhole, within the BZ.

Drillhole 150SD12:

44 m at 2.0 g/t gold, 93 g/t silver from 3 m depth downhole, including
12 m at 3.7 g/t gold, 88 g/t silver from 32 m depth downhole and
4 m at 5.8 g/t gold, 84 g/t silver from 53 m depth downhole, including
1m at 21.8 g/t gold, 100 g/t silver from 53 m depth downhole and
42 m at 4.9 g/t gold, 62 g/t silver from 62 m depth down hole, including
23 m at 7.4 g/t gold, 58 g/t silver from 78 m depth downhole, within the BZ.

Drillhole 154SD12

11 m at 6.0 g/t gold, 54 g/t silver from 21m depth downhole, including
4 m at 13.2 g/t gold, 76 g/t silver from 28 m downhole and
12 m at 5.0 g/t gold, 36 g/t silver from 34 m downhole and
15 m at 6.1 g/t gold, 42 g/t silver from 49 m downhole, including
8 m at 10.2 g/t gold, 68 g/t silver from 51 m down hole, within the BZ Zone.

Drillhole 162SD12

33 m at 3.1 g/t gold, 55 g/t silver from 36 m downhole within the BZ Zone.

Drillhole 163SD12

23 m at 4.1 g/t gold, 15 g/t silver from 29 m downhole within the WRZ Zone.

Drillhole 168SD12

205 m at 1.9 g/t gold from near surface (22m downhole), including 67 m at 2.6 g/t gold, 16 g/t silver from 22 m downhole,

5 m at 5.7 g/t gold, 59 g/t silver from 99 m down hole, and 1 m at 66 g/t gold, 5 g/t silver from 226 m downhole within the WRZ Zone.

Drillhole 173SD12

9 m at 4.2 g/t gold, 11 g/t silver from 92m depth downhole, including 3 m at 9.9 g/t gold, 15 g/t silver from 96 m downhole (WRZ Zone).

Drillhole 176SD12

10 m at 6.3 g/t gold, 6 g/t silver from 20 m downhole, including
5 m at 10.2 g/t gold, 4 g/t silver from 20 m down hole, within the WRZ Zone.

Drillhole 177SD12

180 m at 1.8 g/t gold from near surface (12m downhole), including
57 m at 3.3 g/t gold, 19 g/t silver from 99 m downhole, and
7 m at 6.2 g/t gold, 17 g/t silver from 119 m down hole, within the WRZ Zone.

The results confirm the potential of the project and often improve upon high grade intersections from pre-Indochine drilling. The geological understanding of the resource zones continues to improve with this drilling information. Final drill results from 2012 drilling (12 holes) are expected to be released by early February.

Twenty three drillholes (275 samples) with silver assays over 100 g/t silver are being re-assayed from the BZ and WRZ Zones, including three drillholes with very high silver values of 400 to >1500 g/t silver, with results expected in late February.

Bonanza Zone Drilling

The definition and characterisation of high grade 'bonanza' zones are a key focus of ongoing work for Indochine. Once defined, these bonanza gold zones would grow the project resource and further enhance the economics of the project. The Bonanza zones occur mainly as quartz-roscoelite (QR) mineralisation, similar to the bonanza gold zones at the adjoining Porgera mine.

Three bonanza zones of this type have been identified at the Mt Kare project within or nearby the WRZ and BZ mineralised domains by Mr Tony Burgess, an experienced consultant, who was previously the Senior Resource Geologist and Competent Person for resource definition at the nearby Porgera gold mine. Mr Burgess has identified that the bonanza zones have an identical signature to the "bonanza" quartz roscoelite gold zones at the Porgera mine, where the Zone VII orebody contained 5.1 Moz at 27 g/t in 5.8 Mt. At Mt Kare, bonanza zones are defined as 100-450g/t gold over 2-20m width. Silver/gold ratios are being used to differentiate different types of mineralisation, with silver/gold ratios of <2 representing zones of quartz roscoelite mineralisation, which have the highest potential to host bonanza zones of the type identified to date at Mt Kare and Porgera.

Drilling commenced in December on two Bonanza gold zones in the BZ and WRZ Zones of the deposit. Six close-spaced drill holes have been completed to define the character of the quartz roscoelite bonanza gold zone within the BZ Zone at Mt Kare, around drillhole 122SD11. Drilling is currently underway around a Bonanza Zone identified in the south of the WRZ zone.

The Bonanza Zone drilling programme is designed to determine the controls on the high grade gold mineralisation which represents 70% of the contained gold at Mt Kare. Results will help to define

potential extensions or repetitions at depth and along strike, once the controls on mineralisation have been defined in this round of drilling. First results are expected from February onwards.

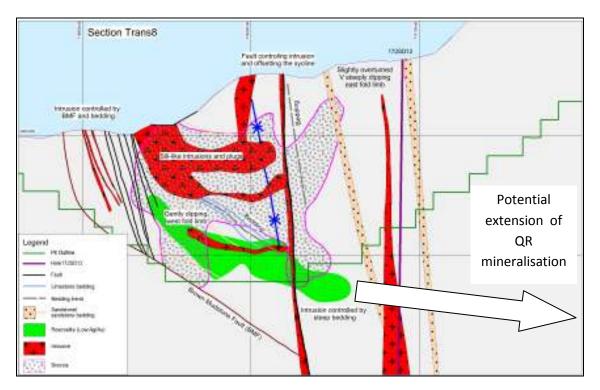


Figure 1: Quartz-roscoelite (QR) mineralisation in the WRZ and potential extensions

Exploration – Cambodia

Indochine holds the largest package of exploration leases in Cambodia, spanning approximately 4000km². The company has prioritised three areas with potential for porphyry copper-gold deposits and epithermal gold deposits, primarily in the Ratanakiri area.

Detailed soil and rock chip sampling, and geological and alteration mapping has shown elevated copper and gold values with potassic altered intrusives and high level epithermal alteration over large areas over 2 x 2km. This work has been supported by gold identified in pan concentrate sampling and BLEG sampling. Offers from other companies are being considered to work with Indochine to progress these projects.

Corporate

Cash & Shares on Issue

Cash in bank was \$3.3 million at 31 December 2012. An additional \$7 million capital raising was completed in January 2013.

While expenditures on the Mt Kare project are significant, due to the climate, location and helicoptersupported nature of the exploration and development activities, the company has accelerated the development programme, given the significant upside potential that has been demonstrated.

The issued capital of Indochine is 722,483,322 fully paid ordinary shares (at 31 December 2012). As at 31 January 2013, the issued capital of Indochine is 786,522,946 fully paid ordinary shares.

A private placement of \$13,188,000 closed on 7 November 2012 with the issue of 94,200,000 new IDC shares at \$0.14 per share. Post quarter end, a private placement closed on 22 January 2013 of \$7,044,358 for 64,039,624 shares at \$0.11 per share. Funds were raised predominantly with some of the Company's largest institutional shareholders. On 12 December 2012, 81,976,476 fully paid ordinary IDC shares were released that were previously under escrow.

Stephen Promnitz Chief Executive Officer, Indochine Mining Limited

For Further Details:

Company:

Stephen Promnitz, CEO +61 2 8246 7007

info@indochinemining.com

Media: Brokers:

FCR - Robert Williams Empire Securities $+61\ 2\ 8264\ 1003$ $+61\ 2\ 8252\ 9223$

gerard@empiresecuritiesgroup.com

Competent Person Statement

Anthony W. Burgess, a qualified consultant for Indochine Mining Ltd, is a member of the Australasian Institute of Mining and Metallurgy and has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity undertaken, being reported herein as Exploration Results, to qualify as a Competent Person as defined in the 2004 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code, 2004 Edition). Anthony W. Burgess has consented to the public reporting of these statements and results and the form and context in which they appear.

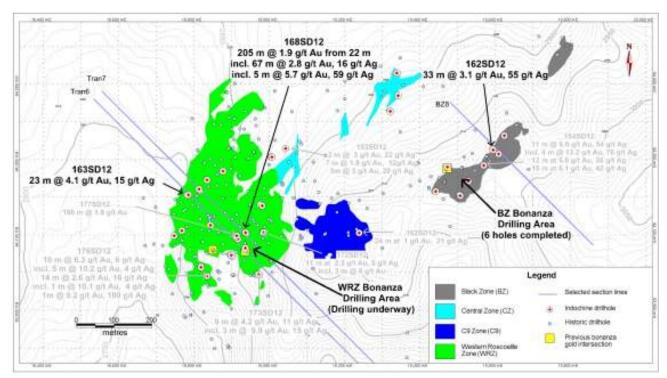


Figure 2: Plan of Mt Kare Resource model zones with locations of drill holes and drill sections with recently announced results. Yellow squares represent bonanza gold zones identified in drilling.

Assay Results – 2012 Drill Programme (4 tables)

Hole	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Domain
147SD12	7.00	37.00	30.00	3.7	96	BZ
	44.00	74.00	30.00	1.5	32	
	83.00	91.00	8.00	0.7	2	
148SD12	51.00	64.00	13.00	1.0	19	WRZ
	69.00	75.00	6.00	1.7	28	
	79.00	102.00	23.00	3.9	18	
	130.00	140.00	10.00	3.0	13	
149SD12	116.00	125.00	9.00	9.3	54	BZ
Incl.	116.00	119.00	3.00	25.0	100	
	132.00	145.00	13.00	1.0	28	
150SD12	3.00	47.00	44.00	2.0	93	
Incl.	32.00	44.00	12.00	3.7	88	
	53.00	57.00	4.00	5.8	84	
Incl.	53.00	54.00	1.00	21.8	100	
	62.00	104.00	42.00	4.9	62	
152SD12	5.60	30.00	24.40	1.0	21	C9
incl.	14.00	19.00	5.00	1.6	9	
	35.00	38.00	3.00	1.0	9	
	74.00	76.00	2.00	0.7	10	
153SD12	49.00	51.00	2.00	3.0	22	CZ
	93.00	100.00	7.00	1.8	12	
Incl.	96.00	99.00	3.00	3.1	20	
154SD12	21.00	32.00	11.00	6.0	54	BZ
incl.	28.00	32.00	4.00	13.2	76	
l	34.00	46.00	12.00	5.0	36	
incl.	36.00	39.00	3.00	8.3	33	
and incl.	40.00	44.00	4.00	5.3	42	
اء سا	49.00		15.00	6.1	42	
incl.	51.00	59.00	8.00	10.2	68	
	89.00	100.00	11.00	1.0	5	
in al	141.00	151.00	10.00	1.6	17	
incl.	145.00	148.00	3.00	3.0	7	
and incl.	164.00	173.00	9.00	1.4	43	

Intercepts are downhole and not true width. Assays reported as received from the laboratory, no top cuts applied.

Table 1: Best assay results from the period November 2012 - January 2013 (continued next page).

Hole	From (m)	To (m)	Interval	Au g/t	Ag g/t	Domain
			(m)	4.0	4 =	14/5-
168SD12	22.20	227.00	204.80	1.9	15	WRZ
	22.20	89.00	66.80	2.6	16	
incl.	54.00	67.00	13.00	4.5	21	
incl.	70.00	84.00	14.00	4.0	7	
	96.00	111.00	15.00	2.8	13	
incl.	99.00	104.00	5.00	5.7	59	
	131.00	137.00	6.00	3.5	27	
	156.00	168.00	12.00	0.7	7	
	199.00	204.00	5.00	2.2	63	
	213.00	221.00	8.00	1.0	20	
	226.00	227.00	1.00	65.7	5	
171SD12	18.0	21.0	3.0	0.7	9	
incl.	77.0	80.0	3.0	6.0	13	
172SD12	75.0	86.0	11.0	2.3	6	
incl.	77.0	80.0	3.0	6.0	13	
	113.0	115.0	2.0	1.3	100	
	149.0	171.0	22.0	1.3	5	
incl.	154.0	158.0	4.0	2.5	5	
and incl.	169.0	171.0	2.0	2.6	11	
173SD12	48.0	49.0	1.0	1.8	28	
	68.0	72.0	4.0	0.9	8	
	92.0	101.0	9.0	4.2	11	
incl.	96.0	99.0	3.0	9.9	15	
	109.0	110.0	1.0	1.5	12	
176SD12	20.0	30.0	10.0	6.3	6	
incl.	20.0	25.0	5.0	10.2	4	
	32.0	46.0	14.0	2.6	16	
incl.	39.0	40.0	1.0	10.1	4	
incl.	45.0	46.0	1.0	9.2	100	
	53.0	70.0	17.0	1.4	25	
	75.0	84.0	9.0	1.6	50	
177SD12	12.00	182.00	170.00	1.8	18	
	23.00	45.00	22.00	2.5	19	
	55.00	61.00	6.00	4.6	14	
	70.00	75.00	5.00	1.1	22	
	83.00	89.00	6.00	1.0	11	
	92.00	97.00	5.00	1.8	40	
	99.00	156.00	57.00	3.3	19	
incl	114.00	134.00	20.00	4.7	13	
incl	119.00	126.00	7.00	6.2	17	
incl	142.00	146.00	4.00	6.8	33	
	161.00	177.00	16.00	0.9	29	
	291.00	294.00	3.00	9.7	20	

Intercepts are downhole and not true width. Assays reported as received from the laboratory, no top cuts applied.

Table 2: Best assay results from the period November 2012 - January 2013 (continued).

Hole	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Domain
137SD12	7	17	10.00	6.00	2.25	WRZ
	25	36	11.00	6.35	14.28	
	112	114	2.00	0.91	10.95	
138SD12	35	67	32.00	4.10	5.96	WRZ
incl	35	39	4.00	17.16	4.33	
141SD12	2.1	6	3.90	0.93	44.95	WRZ
	14	17	3.00	1.44	15.17	
142SD12	20	62	42.00	2.02	37.9	WRZ
incl	45	60	15.00	3.04	57.23	
143SD12	7	42	35.00	2.52	90.26	BZ
	52	55	3.00	0.67	32.13	
	62	67	5.00	0.65	2.14	
	74	82	8.00	1.12	34.25	
144SD12	23	24	1.00	2.94	11	WRZ
145SD12	6.1	24	17.90	0.74	10.11	WRZ
	30	55	25.00	2.70	21.27	
incl	30	46	16.00	3.63	31.44	
	64	93	29.00	1.20	15.03	
146SD12	9	30	21	1.8	64	BZ
	37	49	12	8	30	
	56	64	8	0.9	17	
	78	116	38	20.8	57	
incl.	94	99	5	120.1	93	
	132	136	4	1.4	19	
	159	162	3	1.9	5	

Table 3: Previously reported best assay results from the period August-October 2012.

Hole	From (m)	To (m)	Interval	Au g/t	Ag g/t	Domain
122SD11	59.00	76.70	(m) 17.70	100.3	133.9	BZ
incl.	67.00	71.00	4.00		170.0	BΖ
123SD11	56.80	103.00	46.20	5.43	187.0	DZ
incl.	56.80	93.20	36.40		232.3	BZ
incl.	72.70	85.30	12.60		104.0	
124SD11		lot Sample		10.10	104.0	
125SD12	21.00	35.00	14.00	0.49	5.1	WRZ
	77.00	104.00	27.00		4.3	VVI\2
incl.	85.00	92.00	7.00	6.50	7.8	
	114.00	127.00	13.00	0.46	1.6	
126SD12	26.80	50.00	23.20	2.01	33.3	WRZ
	72.00	88.00	16.00	2.88	5.6	
incl.	74.00	84.00	10.00	4.40	7.7	
	99.00	120.00	21.00	5.48	625.3	
	145.00	150.00	5.00	0.81	5.4	
	174.00	188.00	14.00	0.59	12.1	
127SD12	19.10	39.00	19.90	3.78	18.9	WRZ
incl.	19.10	36.00	16.90	3.90	19.8	
incl.	26.00	34.00	8.00	7.53	21.1	
incl.	30.00	34.00	4.00	14.49	30.2	
incl.	108.00	115.00	7.00	2.49	6.0	
128SD12	58.00	61.00	3.00	3.06	21.9	WRZ
	97.00	107.00	10.00	0.50	40.5	
129SD12	16.00	63.00	47.00	2.50	20.0	WRZ
incl.	36.00	51.00	15.00	4.00	29.0	
	113.00	114.00	1.00	2.86	1.8	
	161.00	167.60	6.60	1.21	17.0	
132SD12	30.10	84.00	53.90	8.25	17.9	WRZ
incl.	30.10	38.00	7.90	2.30	11.0	
incl.	43.00	56.00	13.00	29.03	19.5	
incl.	62.00	63.00	1.00	10.20	78.9	
incl.	74.00	75.00	1.00	5.55	79.5	
	91.00	94.00	3.00	2.93	35.9	
	92.00	93.00	1.00	7.02	97.7	
133SD12	11.00	63.00	52.00	6.74	23.0	WRZ
incl.	11.00	46.00	35.00	8.15	18.7	
incl.	50.00	52.00	2.00	14.35	89.7	
incl.	61.00	62.00	1.00	13.50	100.0	

Table 4: Previously reported best assay results from the period April-July 2012

		Mt Kare I	Local Grid				
Hole	Zone	EastLocal	NorthLocal	RL	Azimuth	Dip (°)	Depth (m)
122SD11	BZ	19469.7	84272.6	2990.3	134.8	-60	76.7
123SD11	BZ	19469.7	84272.6	2990.3	135.0	-50	105.5
124SD11	WRZ	18933.1	84052.1	2862.2	315.0	-65	49
125SD12	WRZ	18897.6	84042.7	2859.3	315.0	-45	163.8
126SD12	WRZ	18933.1	84052.1	2862.2	315.0	-65	213.4
127SD12	WRZ	18912.7	84087.7	2869.0	135.0	-70	171.3
128SD12	WRZ	18898.2	84035.1	2854.4	135.0	-45	136.6
129SD12	WRZ	18934.7	84097.5	2876.0	315.0	-65	167.6
130SD12	WRZ	18982.5	84099.0	2890.6	315.0	-75	26.6
131SD12	WRZ	18828.9	84244.6	2833.9	135.0	-75	152.3
132SD12	WRZ	18912.7	84087.7	2869.0	315.0	-57.5	178.5
133SD12	WRZ	18831.5	83963.1	2851.8	315.0	-75	134.6
134SD12	WRZ	18982.5	84099.0	2890.6	315.0	-75	188.2
135SD12	WRZ	18934.7	84097.5	2876.0	135.0	-80	142.6
136SD12	WRZ	18837.9	84133.5	2844.1	135.0	-45	39.5
137SD12	WRZ	18811.4	84019.2	2850.7	0.0	-90	133
138SD12	WRZ	18975.0	84173.0	2883.5	315.0	-55	110.4
139SD12	WRZ	18972.5	83987.4	2906.0	315.0	-50	31.1
140SD12	WRZ	18972.5	83987.4	2906.0	315.0	-50	60.9
141SD12	WRZ	18765.8	84100.7	2819.4	0.0	-90	42.1
142SD12	WRZ	18787.1	84197.2	2817.1	135.0	-50	120.5
143SD12	BZ	19620.1	84359.7	3007.9	135.0	-70	90.4
144SD12	WRZ	18975.0	84173.2	2883.5	135.0	-50	51.7
145SD12	WRZ	18810.1	84220.2	2821.1	135.0	-70	130.3
146SD12	BZ	19505.0	84205.4	3010.9	315.0	-70	166
147SD12	BZ	19592.2	84324.7	3009.5	135.7	-51.3	95.4
148SD12	WRZ	18866.6	84266.8	2849.0	315.0	-65	154.1
149SD12	BZ	19442.3	84211.0	3000.2	0.0	-90	145.6
150SD12	BZ	19526.1	84240.3	3016.6	315.0	-75	185
151SD12	CZ	19004.8	84306.4	2892.4	135.0	-45	62.6
152SD12	C9	19228.8	84110.8	3010.8	0.0	-90	80.8
153SD12	CZ	19042.0	84326.1	2891.6	135.0	-45	114.6
154SD12	BZ	19568.9	84282.3	3020.5	0.0	-90	93.1
155SD12	CZ	19339.0	84462.0	2919.0	315.0	-45	103.3
156SD12	CZ	19004.8	84306.4	2892.4	135.0	-45	127
157SD12	CZ	19339.0	84462.0	2862.2	315.0	-65	136.1
158SD12	WRZ	18933.1	84052.1	2862.2	315.0	-50	180.6
159SD12	CZ	19310.2	84426.7	2923.9	315.0	-45	124.5
160SD12	CZ	19324.8	84525.0	2906.5	135.0	-45	151.9
161SD12	BZ	19620.1	84359.7	3007.9	0.0	-90	94.9
162SD12	BZ	19592.2	84324.7	3009.5	135.0	-70	133.6
163SD12	WRZ	18787.1	84197.2	2817.1	135.0	-75	71.5
164SD12	WRZ	18748.9	84089.6	2815.8	0.0	-90	30.8
165SD12	WRZ	18912.7	84087.7	2869.0	0.0	-90	173.9
166SD12	WRZ	18811.4	84019.2	2850.7	0.0	-90	141.9
167SD12	WRZ	18897.6	84042.7	2859.3	315.0	-60	139.6
168SD12	WRZ	18934.7	84097.5	2876.0	135.0	-90	272.3
169SD12	WRZ	18810.1	84220.2	2821.1	315.0	-80	70.3
170SD12	BZ	19505.0	84089.6	3010.9	315.0	-80	151.3
171SD12	WRZ	18897.6	84137.7	2859.3	315.0	-85	163.3
172SD12	WRZ	18982.5	84099.0	2890.6	0.0	-90	289.6
173SD12	WRZ	18972.5	83987.4	2906.0	315.0	-75	235.5
174SD12	BZ	19602.0	84312.0	2937.0	134.8	-60	17.9
175SD12	Maratane	19045.3	83054.6	2922.0	315.0	-60	391
176SD12	WRZ	18831.5	83963.1	2851.8	0.0	-90	216.7
177SD12	WRZ	18913.0	84087.9	2869.0	95.0	-70	375.9
178SD12	WRZ	18972.5	83987.4	2906.0	134.8	-65	145.3
179SD12	Maratane	19045.3	83054.6	2611.0	315.0	-75	38.8
Total							7791.3

Table 4: Location of all Drill Holes from 2012 drill programme